A Hybrid NIDS Model Using Artificial Neural Network and D-S Evidence
نویسندگان
چکیده
Artificial Neural Networks (ANNs), especially back-propagation (BP) neural network, can improve the performance of intrusion detection systems. However, for the current network intrusion detection methods, the detection precision, especially for lowfrequent attacks, detection stability and training time are still needed to be enhanced. In this paper, a new model which based on optimized BP neural network and DempsterShafer theory to solve the above problems and help NIDS to achieve higher detection rate, less false positive rate and stronger stability. The general process of the authors’ model is as follows: firstly dividing the main extracted feature into several different feature subsets. Then, based on different feature subsets, different ANN models are trained to build the detection engine. Finally, the D-S evidence theory is employed to integration these results, and obtain the final result. The effectiveness of this method is verified by experimental simulation utilizing KDD Cup1999 dataset. KEywoRDS Anomaly Detection, Artificial Neural Networks, Dempster-Shafer, Network Intrusion Detection, Network Technology
منابع مشابه
Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملA hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry
For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...
متن کاملModel for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique
In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملApplication of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJDCF
دوره 8 شماره
صفحات -
تاریخ انتشار 2016